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ABSTRACT: In 1985, Lo[6] introduced the notion of edge-graceful graphs. In [4], Gayathri et al., introduced
the even edge-graceful graphs. In [8], Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang introduced the k-edge-
graceful graphs.We introduced k-even edge-graceful graphs. In this paper, we investigate the k-even edge-
gracefulness of some cycle related graphs.
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I. INTRODUCTION
All graphs in this paper are finite, simple and undirected. Terms not defined here are used in the sense
of Harary[5]. The symbols V(G) and E(G) will denote the vertex set and edge set of a graph G. The cardinality
of the vertex set is called the order of G denoted by p. The cardinality of the edge set is called the size of G
denoted by g. A graph with p vertices and g edges is called a (p, q) graph.

In 1985, Lo[6] introduced the notion of edge-graceful graphs. In [4], Gayathri et al., introduced the
even edge-graceful graphs and further studied in. In [8], Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang
introduced the k-edge-graceful graphs. We have introduced k-even edge- graceful graphs.

Definition 1.1:
k-even edge-graceful labeling (k-EEGL) of a (p, q) graph G(V, E) is an injection f from E to {2k — 1, 2k,

2k + 1, ..., 2k + 29 — 2} such that the induced mapping f " defined on V by f ’ (x) = (=f(xy)) (mod 2s) taken

over all edges xy are distinct and even where s = max{p, g} and Kk is an integer greater than or equal to 1. A
graph G that admits k-even edge-graceful labeling is called a k-even edge-graceful graph (K-EEGG).

Remark 1.2:

1-even edge-graceful labeling is an even edge-graceful labeling.

The definition of k-edge-graceful and k-even edge-graceful are equivalent to one another in the case of
trees.

The edge-gracefulness and even edge-gracefulness of odd order trees are still open. The theory of 1-even
edge-graceful is completely different from that of k- even edge-graceful. For example, tree of order 4 is 2-even
edge-graceful but not 1-even edge-graceful. In this paper we investigate the k-even edge-gracefulness of some
cycle related graphs. Throughout this paper, we assume that k is a positive integer greater than or equal to 1.

2. Prior Results:
1. Theorem : If a (p, q) graph G is k-even edge-graceful with all edges labeled with even numbers and p >q
then G is k-edge-graceful.

2.Theorem : Ifa (p, q) graph G is k-even edge-graceful in which all edges are labeled with even numbers and
1
p>qthen q(q + 2k —1) = M(mod p).
2

0(mod p) if pisodd
Further q(q+2k-1)=

t—(mod p) if p iseven
2
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3.Theorem : Ifa (p, g) graph G is k-even edge-graceful in which all edges are labeled with even numbers and p
>(then p=0, 1 or 3 (mod 4).
4. Theorem : If a (p, q) graph G is a k-even edge-graceful tree of odd order then

k=La-1+1
2

where | is any odd positive integer and hence k = 1(mod p).
5. Observation : We observe that any tree of odd order p has the sum of the labels congruent to 0 (mod p).

6. Theorem : If a (p, q) graph G is a k-even edge-graceful tree of even order with

p =0 (mod 4) then k = P (21 — 1) + 1 where I is any positive integer.
4

[p+4 L
. (mod p) iflisodd
Further k=
|3p+4 o
L (mod p) if liseven
4

2. MAIN RESULTS
Definition 2.1

Let C,, denote the cycle of length n. Then the join of {e} with any one vertex of C, is denoted by C, u
{e}. Inthisgraph,p=qgq=n+1.

Theorem 2.2

The graph C, v {e} of even order is k-even-edge-graceful  for  all
P
2

k -1, n=1(mod4)andn=1.

z{mod?},whereOszs

Proof
Let {v1, V2, ..., Vo, V} be the vertices of C, U {e}, theedges ;= (v,,v, ,) forl<i<n-1;e,= (v ,v,)

and ey = (Vv,, V) (seeFigure 1).

Vg vy v

Figure 1: C, U {e} with ordinary labeling

First, we label the edges as follows:
Fork>1,1<i<nandiis odd,

f(e) =2k+i-2
When i is even, we label the edges as follows:

Forksz(modﬂJ,Oszs p—2’

2 4
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( .  n-4z+7
2k +n+i—-2 forl<i<—m
f(el)zj n 4z+72
|2k+n+i for — < i < n.
| 2
+ 2
For k = i (modﬁ\,
s 7%
f(e) =2k+n+i
+ 6
For k = i (modﬁ\,
s (707
f(e) =2k+n+i-2
+10
Forkzz{modﬂ) P szgﬂ—l,
2 4 2
( ) - 3n-4z+9
2k +n+i-2 forl<i< —m73—
2
f(e')zj 3n-4z+9
|2k+n+i for ——— < i<n.
| 2
[2k whenk = 0(mod p)
f(en+1) :<

L2k+2n—22+2 when k

Then the induced vertex labels are as follows:

-2
Case 1: ksz(modﬂ\, 0<z< P
") 4
( ) o on-4z+7
n+4z+2i-5 forl<i<—m™
(v = ?
| . n-4z+7 .
4z -n+2i-5 for—<i<n.
| 2
+ 2
Case 2: k = P (modﬂ\
s 7007
f'(v,) =2n : fo(v,)=2i-2 for2<i<n.
+ 6
Case 3: k = P (modﬂ\
s (7007
f(v,) =2i for1<i<n.
+10
Case4:ksz{mod£\,p 3233—1
SRy 2

z(modp)andl<z< p-1.
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( ] . 3n-4z+9
4z -n+2i-7 forl<i<——
) = ?
| . 3n-4z+9
4z -3n+2i—-7 for — < i<n.
| 2
FOI’kEZ(mOdB\,OSZSB—l,
"% 2
f+(vn+1)_0

Therefore, f* (V) ={0,2 4, ..,2s -2}, where s = max{p, q} = n+ 1. So, it follows that the vertex

labels are all distinct and even. Hence, the graph

C, u {e} of even order is k-even-edge-graceful for all k = =z (m od B\ ,  Where
"2

0<z< ﬂ—1,nzl(mod4)andnqz:1.I

2
For example, consider the graph Ci3 L {e}. Here n=13;

s=max {p, q} = 14; 2s = 28. The 21-EEGL of C,5 U {e} is given in Figure 2.

56

Figure 2: 21-EEGL of C;3 U {e}
For example, consider the graph C;; U {e}. Here n = 17;

s =max {p, q} = 18; 2s = 36. The 5-EEGL of Cy; L {e} is given in Figure 3.

Figure 3: 5-EEGL of C;; L {e}
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Definition 2.3 [8]

For p > 4, a cycle (of order p) with one chord is a simple graph obtained from a p-cycle by adding a
chord. Let the p-cycle be vy, ... vpvi. Without loss of generality, we assume that the chord joins v; with any one v;,
where 3 <i<p—1. This graph is denoted by Cy(i). For example C  (5) means a graph obtained from a p-

cycle by adding a chord between the wvertices v; and vs. In  this graph,
qg=p+1.

Theorem 2.4
The graph Cq(i), (n>4), 3<i<n-1, cycle with one chord of odd order is k-even-edge-graceful for all

ksz(mod&\,whereOSZS i—1.
%) 2

Proof
Let {vi, Vo, V3, .., Vi Vi, .., Vo} be the vertices of C,(i), the edges

) fori<i<n-1;e,= (v, ,v,) and e = (v,,v,),3<i<n-—1(seeFigure 4). The chord

ei:(Vi,V- n'"1

i+1

connecting the vertex v; with v;, (i > 3) is shown in Figure 4. For this graph, p=nandg=n+ 1.

Viel

Figure 4: C,(i) with ordinary labeling

First, we label the edges as follows:
Fork>land1<i<n,

[2k +i-2 wheni isodd
fle) =4 . .
L2k+n+|—2 wheni iseven.
[2k whenk = 0(modq)
f(en+1) :%

12k +2n-2z+2 whenk =z(modq),1<z<q-1.

Then the induced vertex labels are as follows:

Casel: n=1(mod4)andn=1

+ 2
Case 1: kzz(modi\,ogzg d
") 4
( ) o on-4z+7
4z+n+2i-5 forl<i<—m—
) =] ’
n-4z+7
|l4z—n+2i—7 for <i<n
2

Www.ijesi.org 5| Page



K-Even Edge-Graceful Labeling Of...

Case2: k = M(modg}

2

f'(v,) =2i forl<i<n.

+10
Case 3: kzz(modi\, g gzgi—l
") T 2
( _ . 3n-4z+9
4z —n+ 21-7 forl<i< —m—mmm
) =] ?
| ) 3n-4z+9
l4z—3n+2|—9 for ——— < i<n.
2

Case ll:n=3 (mod 4) and n# 3

Casel: k = z{modi} 0< zsg
4

2
( .  n-4z+7
4z+n+2i-5 forl<i<—m—
= ?
| . n-4z+7
4z -n+2i—-7 for—<i<n
| 2
+ 4
Case2: k = q {modg\
s 0%
f (v,) =2i-2forl<i<n
+ 8
Case 3: kzz(mod&\,q szsi—l
1m0 ) 2
( ) . 3n-4z+9
4z -n+2i-7 forl<i< —m3m3—
) = ?
| . 3n-4z+9
l42—3n+2|—9 for ——— < i<n.
2

Therefore, f° (V) {0, 24, .., 2s -2} where s = max {p, g} =n + 1. So, it follows that the vertex labels
are all distinct and even. Hence, the graph

Cn(i), (n>4),3<i<n-1, cycle with one chord of odd order is k-even-edge-graceful for all k = z { mod i} ,
2

9
2
For example, consider the graph C, (5) . Here n=9; s =max {p, q} = 10; 2s = 20.

0<z<s—-1.m
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The 15-even-edge-graceful labeling of C; (5) is given in Figure 5.

16 14
Figure 5: 15-EEGL of Cy(5)

For example, consider the graph Cy1(6). Here n = 11; s = max {p, g} = 12; 2s = 24. The 11-EEGL of Cy;(6) is given
in Figure 6.

4

14

Figure 6: 11-EEGL of Cy1(6)

Theorem 2.5
The graph C_ (i), (n>4), 3 <i<n-1, cycle with one chord of even order is k-even-edge-graceful

forall k = z(modq),where0<z<qg-landn=0(mod4).

Proof

Let the vertices and edges be defined as in Theorem 6.3.2.
First, we label the edges as follows:
Fork=>1,

f(e)=2k+1 ; f(e,)=2k-1

n
f(ei):2k+2i—3 for3<i<—+3.
2

n
Fork>land —+3<i<n,
2

[2k + 2i+1 when iis odd

fe) =4

L2k +2i—3 when iiseven.
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[2k when k = 0(modq)

f en+ :%
( 1) L2k+2n—22+2 when k

Then the induced vertex labels are as follows:

z(modqg), 1< z<q-1.

Case 1: k=0 (mod q)

f"(v,) =2n-2 f"(v,) =0.
£ (v,) =2
[ .n
4i -8 ford<i<—+3
£ (v) = ’
n
|4i—2n—6 for—+3<i<n.
| 2
g-1
Case 2: k=z(mod(q), 1< z <
f"(v,) =4z+4i-8 wheni=1,2.
qg-3
Fork=z(modQ),1< z <
2
f7(v,) =4z+2
For4<i<n,
( ) o
|4z+4|—8 for4<i<——272+3
| 2
n n
. 4z +4i-2n-10 for ——z+3<i<—+3
fo(v,) = 2 2

4z +4i-2n-6

qg-1
For k = ——(modq),
2

|
|
|
|4z +4i-4n-38

n
for —+3<i<n-z+2
2

forn-z+2<i<n.

f7(vy) =0
[ . n
4i-10 ford<i<—+3
£ (v,) = ?
n
|4i—2n—8 for —+3<i<n.
| 2
q+1
Case 3: k = (mod q)
2
f"(v,) =2n f"(v,) =2
£ (v,) =4
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[ . ..n
|4|—6 for4<i<—+ 2
2
+ - n
f(vi) _JO wheni=—+ 2
| 2
| n .
4i-2n-4 for —+ 3<i<n.
| 2
q+3
Case4: k =z(mod q), <z<q-1

f"(v,) =4z+4i-2n-10wheni=1,2.
f"(v,) =4z-2n

qg+3
For k =z (mod q),

<z<£Lqg-2,
(4z+4i—2n—-10 ford4<i<n-z+3

n
forn—-z+3<i<—+ 3
fo(v,) = 2

i n i 3n
|4z+4|—4n—8 for —+3<i<—-2+3
2 2

I
N
_I_
N
|
N
S
|
=
N

3n .
for ——-z+3<i<n.
2

,___
N
N
_I_
I
|
[e)]
>
|
=
o

Fork=q -1 (mod q),

[ o
4i-12 ford<i<—+3
£ (v,) = ?
n
|4i—2n—10 for —+ 3<i<n.
| 2
Therefore, f* (V)< {0, 2, 4, ..., 2s -2}, wheres =max{p, q} =n + 1. So, it follows that the

vertex labels are all distinct and even. Hence, the graph C (i), (n>4), 3 <i<n-1, cycle will one chord of

even order is k-even-edge-graceful for all k =z (mod ), where0<z<q-1andn=0 (mod 4). =
For example, consider the graph Cy(5), Here n = 16; s = max{p, q} = 17; 2s = 34.

The 18-EEGL of Cy4(5) is given in Figure 7.

Figure 7: 18-EEGL of Cy4(5)
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Definition 2. 6

The crown C, © K; is the graph obtained from the cycle C,, by attaching pendant edge at each vertex of
the cycle and is denoted by C . In this graph, p=qg=2n.
Theorem 2.7

The crown graph C;, (n > 3) of even order is k-even-edge-graceful for all k = z { mod BJ,
3

where 0 < z < B—1 and n=0 (mod 3).
3

Proof
For this graph, p=q =2n. Let vy, V2, V3, .., Vaand v,, v,, v,, ..., v, be the vertices and pendant vertices of
C . respectively.

.

R

en e,
Vi Vo e,

€n-1 €2

Figure 8: C with ordinary labeling
The edges are defined by

e=(v,.v,,) for1<i<n-1 ; en=(Vv,,v,)

n' 1

and e, =(v,.v,) for 1 <i < n (see Figure 8).

First, we label the edges as follows:

Fork=>1,
f(e) =2k+4i-5 fori<i<n
f(e) =2k
f(e) =2k+4(n-i+1) for2<i<n.

Then the induced vertex labels are as follows:

Casel: k = O{modsﬂJ
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[4n+4i-10 wheni=1,2

f (v =
(vi) <L4i—1o for 3<i<n.

Case 2: k = z(modﬁ\,ls zsﬂ—l and z is odd
") 3

( ] ) 5-3z
6z+ 4i-10 forl<i<n+
) =] ?
5-3z
|l62—4n+4i—10 forn + <i<n.
2
Case 3: k = z(modﬁ\,ls zsﬂ—l and z is even
Gy 3
( ) ) 6 -3z
6z+4i-10 forl<i<n+
) =] ?
6 -3z
|l62—4n+4i—10 forn + <i<n
2

The pendant vertices will have the labels (mod 2p) of the edges incident on them. Clearly, the vertex
labels are all distinct and even. Hence, the crown graph C:, (n > 3) of even order is k-even-edge-graceful
L
3

—1landn=0(mod3). =

forall k = z(modﬂ\, where 0 < z <
Sy

For example, consider the graph C g . Here p = q =12; s = max{p, q} = 12; 2s = 24. The 2-even-edge-

graceful labeling of Cg is given in Figure 9.

4
4
23 6 3
8 — 2 10 S 0
19 7
120L4 22 141-L020
15 18 11
16
16

Figure 9: 2-EEGL of C
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Theorem 2.8

The crown graph C ', (n > 4) of even order is k-even-edge-graceful for all k = z(mod p),

where0<z<p-1,n=1(mod3)andn==1.
Proof

Let the vertices and edges be defined as in Theorem 6.4.2. The edge labels are also same as in Theorem

6.4.2.
Then the induced vertex labels are as follows:
Case 1: k=0 (mod p)

. ([4n+ 4i-10 wheni=1,2
f(v,) =

4i-10 for3<i<n.
L

When z is odd, the induced vertex labels are given below:

p+1
Case 2: k=z(modp),1<z<

( ) ) 5-3z
6z+4i-10 forl<i<n+
2

fFr(v) = c 4,
6z-4n+4i-10 forn+ <i<n.

|

| 2
+ 4 2p+ 2

p << p

Case 3: k=z(mod p),

3
( ) ) 5-3z
6z—4n+4i-10 forl<i<2n+
f(v) = ’
| . 5-3z
[62—8n+4|—10 for 2n + <i<n.
2
2p+5
Case 4: k=z (mod p), <z<p-1
3
( ) ) 5-3z
6z-8n+4i-10 forl<i<3n+
f(v) = ’
| . 5-3z
l62—12n+4|—10 for 3n + <i<n.
2
When z is even, the induced vertex labels are given below:
p+1
Case5: k =z(modp), 1<z<
3
( . . 6-3z
6z+4i-10 forl<i<n+
f(v) = ’
| . 6 -3z
l62—4n+4|—10 forn+ <i<n.
2

+ 4 2p+2
p ZSIO

Case6: k = z(mod p),
3 3

IA
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( . . 6 -3z
6z-4n+4i-10 forl<i<2n+

£ (v) = ?
| . 6 -3z
l62—8n+4|—10 for2n + <i<n.

2
2p+5
Case7: k =z(mod p), <z<p-1

( ] ) 6 —3z
6z-8n+4i-10 for1<i<3n+

f£'(v) = ’

. 6 -3z

6z-12n+4i-10 for3n + <i<n.

|
| 2
The pendant vertices will have the labels (mod 2p) of the edges incident on them. Clearly, the vertex
labels are all distinct and even. Hence, the crown graph C (n > 4) of even order is k-even-edge-graceful

forall k = z(mod p),where0<z<p-1,n=1(mod3)andn=1 =

For example, consider the graph C; . Here p =q =14; s = max {p, q} = 14; 2s = 28. The 5-even-edge-

graceful labeling of C  is given in Figure 10.

33 9
14—+ p——®
14 20 0 34
29 13
18— 816 49—
18 30
25 7

22
Figure 10: 5-EEGL of C
Theorem 2.9
The crown graph C n+ , (n > 5) of even order is k-even-edge-graceful for all k =z (mod p), where 0 <z <p
—1,n=2(mod 3) and n = 2.
Proof
Let the vertices and edges be defined as in Theorem 2.7. The edge labels are also same as in Theorem

2.7.
Then the induced vertex labels are as follows:

Case 1: k=0 (mod p)

Www.ijesi.org 13| Page
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([4n+4i-10 wheni=1,2

Frv) =3
|4i-10 for3<i<n.
When z is odd, the induced vertex labels are given below:
p+2
Case 2: k=z(modp),1<z<
( . ) 5-3z
6z+ 41-10 forl<i<n+
o (v) = ?
| . 5-3z .
l62—4n+4|—10 forn+ <i<n.
2
p+5 2p+1
Case 3: k=z(mod p), <z<
3 3
( ) ) 5-3z
6z—-4n+ 4i-10 forl<i<2n+
f(v,) = 2
| . 5-3z .
6z—-8n+4i—-10 for2n+ <i<n.
L 2
2p+4
Case 4: k=z(mod p), —— <z<p-1
3
( . . 5-3z
6z-8n+4i-10 forl<i<3n+
f(v) = 2
| . 5-3z
6z-12n+ 4i—-10 for3n + <i<n.
| 2
When z is even, the induced vertex labels are given below:
p+2
Case 5: k=z(modp), 1<z<
( . ) 6 -3z
6z+ 4i-10 forl<i<n+
fr(v,) = ?
| . 6 -3z .
l62—4n+4|—10 forn+ <i<n.
2
p+5 2p+1
Case 6: k=z (mod p), <z<
3 3
( ) ) 6 -3z
6z—-—4n+ 4i-10 forl<i<2n+
(v,) = 2
| . 6 -3z
6z-8n+4i—-10 for2n + <i<n.
| 2
2p+4
Case 7: k=z(mod p), —— <z<p-1
3
( . ) 6 — 3z
N 6z—-8n+ 4i—-10 forl<i<3n+
£ (v,) :j 2
| i 6 —3z
l62712n+4|710 for 3n + > <i<n.

Www.ijesi.org
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The pendant vertices will have the labels (mod 2p) of the edges incident on them. Clearly, the vertex
labels are all distinct and even. Hence, the crown graph C ', (n = 5) of even order is k-even-edge-graceful for
allk=z (mod p), where0<z<p-1,n=2(mod3)andn=2. =

For example, consider the graph C 5+ . Here p=q=10; s=max {p, q} = 10; 2s = 20.

The 10-even-edge-graceful labeling of C 5+ is given in Figure 11.

20

35,/ 1% N9 16
24 %

10 18

31 23

Figure 11: 10-EEGL of C

Definition 2.10
Agraph H (G ) isobtained from a graph G by replacing each edge with m parallel edges.

Theorem 2.11

The graph  Hy(P,), ( > 2) of even order is k-even-edge-graceful for all
k=z(modp-1), where 0<z<p-2andniseven.
Proof

Let {vi, V2, ..., Vo} be the vertices of Hy(Py,). Let the edges e;; of H ( P ) be defined by

gjj= (vi, Vi) for 1 <i<n-1,1<j<n (see Figure 12).

Figure 12: H,(P,) with ordinary labeling
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For this graph, p=n; g=n(n-1).
First, we label the edges as follows:
Fork>1,
[2k +ni+2j-5 forl<i<n-1,iisoddand1< j<n
f (eij): { . . . - .
2k +2j+n(i-1)-4 forl<i<n-1 iisevenandl< j<n.
Then the induced vertex labels are as follows:

Case 1: k=0 (mod p-1)
f(v,) =2n(n-2).

(n(2n+2i-9) for 2<i<4
f7(v,) =

Ln(2i—7) ford<i<n-1.

f (v,) =n(n-4).

Case 2: k=z(modp-1),1<z<p-2
f"(v,) =2n(z-1).
Subcase (i): k=1 (modp-1)
f'(v,) =n@i-3)for2<i<n-1
f'(v,) =nh+2@z-2)]
L
2
n(2i-3)+4n(z-1) for 2<i<n-2z+3

Subcase (ii): k=z(modp-1),2<z<

fi(v,) =
ln[Z(i+22—n)—5] forn-2z+3<i<n-1.
f'(v,) =nh+2z-2)]

p+2
Subcase (iii): k=z (modp-1),

<z<p-2

n[2(i+2z-n)-5] for 2<i<2n-2z+2

£ (v) =

ln[z(i—2n+22)—3] for 2n-2z+2<i<n-1.

f'(v,) =n[2(z-1)-n].

Therefore, f* (V) {0, 2 4, .. 2s— 2} where s = max {p, q} = n(n — 1). So, it follows that the
vertex labels are all distinct and even. Hence, the graph H,(P,), (n > 2) of even order is k-even-edge-graceful for

allk=z(mod p-1), where0<z<p-2andniseven. =
For example, consider the graph Hg(Pg). Here p = 8; q = 56;

s=max {p, q} =56; 2s = 112. The 6-EEGL of Hg(Ps) is given in Figure 13.

Www.ijesi.org 16 | Page



K-Even Edge-Graceful Labeling Of...

[1].
[21.

[3].
[4].

[5].
[6].
[71.

8.

Figure 13: 6-EEGL of Hg(Ps)
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